模型输入与输出OpenVINO 2020R04版本的官方模型库中有两个人脸检测模型标号分别为: face-detection-0105 – MobileNetv2 + FCOS face-detection-0106 – RestNet152 + ATSS 这里需要注意一下,FCOS与ATSS模型检测头输出跟SSD模型不同,官方支持的IR文件有两个输出数据分别是: boxes: [Nx5], la

模型解释OpenVINO支持场景文字检测是基于MobileNet的PixelLink模型,该模型有两个输出,分别是分割输出与bounding Boxes输出,结构如下: 下面是基于VGG16作为backbone实现的PixelLink的模型结构: 输入格式:1x3x768x1280 BGR彩色图像 输出格式: name: “model/link_logits_/add”, [1x16x192x32

模型介绍之前没有注意到,最近在OpenVINO2020R04版本的模型库中发现了它有个手写数字识别的模型,支持 or . 格式的数字识别与小数点识别。相关的模型为: handwritten-score-recognition-0003 该模型是基于LSTM双向神经网络训练,基于CTC损失, 输入格式为:[NCHW]= [1x1x32x64] 输出格式为:[WxBxL]=[16x1x13] 其中13

人脸3D点云提取网络介绍(facemesh) 2019年的时候有一篇在移动端实现3D点云实时提取的论文,被很多移动端AR应用作为底层算法实现人脸检测与人脸3D点云生成。该论文名称为《Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs》,github有pytorch版本的实现地址如下: https://githu

基本原理OpenVINO在高版本中支持动态修改模型的输入尺度大小(一般是图像宽与高),这个功能是非常有用的,可以帮助我们在程序执行阶段动态修改CNNNetWork的大小,而无需再次转换IR模型文件。它的基本原理支持来自推理引擎的底层ngraph功能支持。最新的IR文件版本v10,它的加载流程与依赖结构如下: 其中读取到的模型可以方便在运行时动态获取与修改替换节点。这里我们通过CNNNetwork支
